# A Search for SUSY in Multi-*b* Jet Events at ATLAS

#### Matthew Epland

Advisor: Prof. Ayana Arce Duke University March 25th, 2019





#### **Our Standard Problems**

- The SM works amazingly well over 12 orders of magnitude
- But, there are known issues: Dark Matter, Hierarchy Problem



Matthew Epland

|1|

## Enter Supersymmetry (SUSY)



- What if we send Bosons  $\leftrightarrow$  Fermions?
- New supersymmetric loops of opposite sign cleanly fix the hierarchy problem
- Lightest supersymmetric particle (LSP) is a natural dark matter candidate



# SUSY solves both issues in a "beautiful" way, and we should be able to see it in many channels at the LHC!

Matthew Epland

SUSY Multi-b Jets

## SUSY at LHC: Gluino Searches

- Scalar Higgs renormalized by  $\tilde{t} \rightarrow$ Naturalness conditions on  $m_{\tilde{t}}$
- Scalar  $\tilde{t}$  renormalized by  $\tilde{g} \rightarrow$ Naturalness conditions on  $m_{\tilde{q}}$
- Results in light  $\tilde{g}$  and  $\tilde{t}$ , (hopefully) can be produced at the LHC!
- $\widetilde{g}$  have large color charge  $\rightarrow$ High production cross section!
- *R*-parity forces  $\tilde{g}$  pair production, final state LSPs  $\rightarrow E_{\rm T}^{\rm miss}$





## The LHC and ATLAS



- Large Hadron Collider:
  - $\sqrt{s} = 13 \, {\rm TeV} \, pp$  collisions
  - 27 km circumference
  - $\sim 1\,{\rm GJ}$  of stored energy
  - $\sim 10^{11}~p~{\rm cross}~/~25~{\rm ns}$
  - Total  $L = 148.5 \, \text{fb}^{-1}$

#### • ATLAS:

- Hermetic general purpose particle physics detector
- 2012 discovery of H
- 2 T axial, 0.2 T-3.5 T toroidal magnetic fields
- $\sim 10^8$  readout channels
- Triggered down to 1 kHz
- $\sim 2\,{
  m GB\,s^{-1}}$ ,  $\sim 1\,{
  m PB/year}$

SUSY Multi-b Jets

[2, 3]

#### The ATLAS Detector



[4]

## The Multi-b Search

#### **Multi-***b* Introduction

- pp collisions pair produce  $\widetilde{g}$ , decay to SM particles + LSPs  $(\widetilde{\chi}_1^0)$ 
  - Assume off-shell *t* to simplify to two parameters; m<sub>q̃</sub>, m<sub>χ̃</sub>, m<sub>χ̃</sub>
  - Assume 100 % BR, all other SUSY particles decouple
- Search for final states of  $\geq 4 \ b$ -jets +  $E_{\rm T}^{\rm miss}$  in 0L & 1L channels
- $79.8 \, \text{fb}^{-1}$  analyzed with a traditional search in July [5]
- Re-analyzed with BDT based approach for dissertation and Run 2 R&D



## **Boosted Decision Trees (BDT)**

- BDT: Ensemble of trees of branching cuts
- Trees iteratively grown by minimizing the objective function
  - Includes training loss and regularization
  - 2nd order Taylor expansion
    - $\rightarrow$  Gradient descent
- Each new tree complements existing trees
- Assigns each event to a leaf with weight  $\boldsymbol{w}$ 
  - Background-like w < 0, signal-like 0 < w
- Sum weights from trees, take logistic function, get signal score  $0 < \hat{y} < 1$
- Using the XGBoost library [6] github.com/dmlc/xgboost



#### **Data Samples and Preselections**

- Gtt signal and SM background simulations:
  - $t\bar{t}$ , single-top,  $t\bar{t} + X$ , W+jets, Z+jets, diboson
- Preselections:
  - Pass lowest unprescaled  ${\it E}_{\rm T}^{\rm miss}$  trigger,  ${\it E}_{\rm T}^{\rm miss} \geq 200\,{\rm GeV}$
  - $N_{\rm jet} \geq 4$ ,  $N_{b\text{-jet}} \geq 3$ ,  $p_{\rm T}^{\rm jet\,1} > 30~{\rm GeV}$
  - If  $N_{\rm sig \, lep}=0$  (OL),  $\Delta\phi^{4j}_{\rm min}>0.4$
- + Events (73k) Breakdown:  $53.6\,\%$  Train,  $13.3\,\%$  Validation,  $33\,\%$  Test
- Gtt signal and the BDT are parameterized by  $m_{\widetilde{q}}$ ,  $m_{\widetilde{\chi}_1^0}$
- For training uniformly assign background events  $m_{\tilde{a}}$ ,  $m_{\tilde{\chi}_{1}^{0}}$  values
  - Reweight so each mass point has equal sig, bkg  $(w_{all}^{bkg}/N_{mass\ points}^{sig})$

#### **Training Variables**

• Core set of 7 variables provide much of the performance:

- $N_{\rm jet}(p_{\rm T}>$  30 GeV,  $\eta<$  1.3),  $N_{\rm jet}(p_{\rm T}>$  30 GeV,  $\eta<$  1.5)
- $N_{\rm jet}(p_{\rm T}>$  30 GeV,  $\eta<2.0)$ ,  $N_{\rm jet}(p_{\rm T}>$  50 GeV,  $\eta<1.5)$
- $H_{\rm T}^{\rm leptons\,+\,\rm soft\,jets}$  Obfuscated,  $m_{\rm T}$ ,  $E_{\rm T}^{\rm miss}$
- Additional 11 provide the rest:
  - +  $N_{\rm sig\,lep},~N_{\rm RC\,jet}(m>$  80 GeV),  $N_{\rm jet}(p_{\rm T}>$  30 GeV,  $\eta<1.0)$
  - $N_{\rm jet}(p_{\rm T}>$  50 GeV,  $\eta<$  1.0),  $N_{\rm jet}(p_{\rm T}>$  50 GeV,  $\eta<$  1.3)
  - $H_{\rm T}^{\rm soft\,jets}$ ,  $m_{\rm eff}^{\rm incl}$ ,  $m_{\rm T,min}^{b\text{-jets}}$ ,  $M_J^\Sigma$ ,  $m_{\rm eff}^{4j}$ ,  $p_{\rm T}^{b\text{-jet}\,4}$
- Plus  $m_{\widetilde{g}}$  and  $\Delta m = m_{\widetilde{g}} m_{\widetilde{\chi}_1^0}$  to parameterize the signal (20 total)

#### Variable Importance: Gain



## **Statistical Framework Overview**

• To find SUSY and normalize backgrounds we construct signal regions and (low signal) control & validation regions



• ATLAS has standardized code (HistFitter [7]) to fit the regions, produce PDFs & transfer factors, handle systematics, make profile likelihood ratios, and run the hypothesis testing

### Signal Region Selection: Parameter Points

#### **Defining Parameter Points**

- Need to define CRs, VRs, and SRs in  $\hat{y}_{\text{SUSY, BDT}}$  before fitting
- BDT(m<sub>g̃</sub>, Δm): Selecting parameters effectively returns a particular BDT and associated output score ŷ(m<sub>g̃</sub>, Δm)
  - Will also divide events into 0L and 1L lepton channels
- 115 signal mass points for training, can choose any for predictions
  - Don't want to have unwieldy fits or be impacted by the LEE
  - BDT interpolation not assured! Just use training points to be safe
- Select mass points to create a few  $\hat{y}$ , and thus SRs, which together have good coverage and performance across all masses
- How can we choose these points to target regions in mass space?

## **Defining Parameter Points**

- Need metrics to describe how similar two points are:
  - RMSD: Compare BDT at different points via predicted  $\hat{y}$  values

• RMSD
$$(p_i, p_j) = \sqrt{\sum_k w_k \left(\hat{y}_k^{p_i} - \hat{y}_k^{p_j}\right)^2 / \sum_k w_k}$$

• Radius in mass space: Keeps regions compact

• 
$$R_m(p_i, p_j) = \sqrt{\left(\Delta m_{\widetilde{g}}\right)^2 + \left(\Delta m_{\widetilde{\chi}_1^0}\right)^2}$$

- Need to invert:  $1/(\text{RMSD} + \text{RMSD}_{\min>0}) + 1/R_m$
- Relative measure, can't k-means cluster, but can graph!
- Find communities within resulting graph via Louvain method [8, 9]
- Find representative points by optimizing the significance
  - Loop over points in community, use each as  $m_{\widetilde{a}}, \, \Delta m$
  - Evaluate<sup>1</sup> Z at other points, compute  $Z_{\text{metric}} = \langle \min(5.0, Z_{\text{B}}) \rangle$ 
    - Re-weight signal at each point to have equal production cross section
  - Pick point which maximizes  $Z_{\rm metric}$  across the community
- $^1Z_{\rm B}{:}$  Approximate significance via BinomialExpZ, with bkg uncertainty of 50 %

# Graph 0L





#### **Parameter Points 0L**



#### Parameter Points 1L



## Signal Region Selection: $\hat{y}$ Regions

## $\hat{y}$ Region Selection

- Now we need to define the associated CR, VR, SR per parameter point
- Keep things simple and just use regions in  $\hat{y}_{\rm SUSY,\,BDT}$
- Would like to keep regions as close to  $1.0~({\rm signal-like})$  as possible, while having "enough" statistics in each
- This will make CRs & VRs with the most signal-like background events
- Can further sub-divide and shape fit within the resulting SR range
- Apply prior limits to Gtt production cross section where possible

# $\hat{y}$ Region Selection

- Plot S/B vs  $\hat{y}$ 
  - Smoothed with Gaussian kernel
- Select regions:
  - SR:  $S/B \ge 1.0$ ,  $W_{sig} \ge 4.0$ ,  $W_{bkg} \ge 1.0$
  - VR:  $S/B \leq 0.2$ ,  $S/\sqrt{B} \leq 3$ ,  $W_{\rm bkg} \geq 20$
  - CR:  $S/B \le 0.1$ ,  $W_{\rm bkg} \ge 30$
- Shape fit within SR:
  - Use Z<sub>B</sub> optimal threshold for top bin
  - +4 bins at lower  $\hat{y}$
  - Keep  $W_{\rm bkg} \approx 1.0$



## $\hat{y}_{\text{SUSY, BDT}}$ & Bkg Composition



## **Fit Construction**

#### **Profile Likelihood Fit**

- Likelihood function L for observed  $\boldsymbol{n}$ , nuisance parameters  $\boldsymbol{\theta}^0$ ,  $\boldsymbol{\theta}$ 
  - P = Poisson,  $\lambda (MC expectations, \theta)$ ; G = standard Gaussian

$$L\left(\boldsymbol{n},\boldsymbol{\theta}^{0} \mid \boldsymbol{\theta}\right) = \prod_{i \in SR} P\left(n_{i}, \lambda_{i}\right) \times \prod_{j \in CR} P\left(n_{j}, \lambda_{j}\right) \times \prod_{k \in \mathcal{S}} G\left(\theta_{k}^{0} - \theta_{k}\right)$$

- Make test statistic q from the log-likelihood ratio
  - $\mu_{\rm sig}=0~(1)$  for background only (signal + background) expectation
  - Find  $\hat{\mu}_{sig}$ ,  $\hat{\theta}$  which maximizes L absolutely,  $\hat{\theta}$  for the chosen  $\mu_{sig}$

$$q_{\mu_{\rm sig}} = -2\log\left(L(\mu_{\rm sig}, \hat{\hat{\boldsymbol{\theta}}})/L(\hat{\mu}_{\rm sig}, \hat{\boldsymbol{\theta}})\right)$$

- Take asymptotic limit to get integral of the PDF, *i.e.* p-value
- "Profile" systematics / NPs to find most conservative  ${m heta}^0$  from data
- Create  $CL_s$  to better handle downward background fluctuations

$$CL_s = p_{s+b} / (1 - p_b)$$

## **Combining Signal Regions**

- First drop individual regions as needed; those which have:
  - Large VR pulls (Gtt\_1L\_1)
  - Large theory systematics, per SR bin (removes Gtt\_0L\_4)
- Take each combination of orthogonal 0L & 1L regions as multi-bin fit
  - Include all associated regions in one likelihood function
- Treat each 0L & 1L combination as non-orthogonal single-bins
  - Take maximum of independent  $CL_s$  contours
- Drop combinations which do not push the exclusion limit
  - Removes Gtt\_0L\_2, Gtt\_1L\_4

## **Region Definitions**

| Region   | $m \sim g$ | $m \sim 1$ | $N_{siglep}$ | Туре                                 | $\hat{y}$ Selection                                                                                                                                                                                                                                                                                                            |
|----------|------------|------------|--------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gtt_0L_0 | 1900 GeV   | 400 GeV    | 0            | CR<br>VR<br>SR4                      | $\begin{array}{l} 0.88400 \leq \hat{y}_{0L,0} < 0.94200 \\ 0.94200 \leq \hat{y}_{0L,0} < 0.97200 \\ 0.99836 \leq \hat{y}_{0L,0} \leq 1.00000 \end{array}$                                                                                                                                                                      |
| Gtt_0L_1 | 2000 GeV   | 1000 GeV   | 0            | CR<br>VR<br>SR4                      | $\begin{array}{l} 0.91800 \leq \hat{y}_{0L\text{-1}} < 0.95000 \\ 0.95000 \leq \hat{y}_{0L\text{-1}} < 0.97200 \\ 0.99717 \leq \hat{y}_{0L\text{-1}} \leq 1.00000 \end{array}$                                                                                                                                                 |
| Gtt_0L_3 | 1900 GeV   | 1200 GeV   | 0            | CR<br>VR<br>SR4                      | $\begin{array}{l} 0.93000 \leq \hat{y}_{\text{0L},\text{3}} < 0.95400 \\ 0.95400 \leq \hat{y}_{\text{0L},\text{3}} < 0.97000 \\ 0.99621 \leq \hat{y}_{\text{0L},\text{3}} \leq 1.00000 \end{array}$                                                                                                                            |
| Gtt_1L_0 | 2100 GeV   | 800 GeV    | $\geq 1$     | CR<br>VR<br>SR0<br>SR1<br>SR3<br>SR4 | $\begin{array}{l} 0.90800 \leq \hat{y}_{1L,0} < 0.95000 \\ 0.95000 \leq \hat{y}_{1L,0} < 0.97400 \\ 0.99400 \leq \hat{y}_{1L,0} < 0.99500 \\ 0.99500 \leq \hat{y}_{1L,0} < 0.99600 \\ 0.99700 \leq \hat{y}_{1L,0} < 0.99800 \\ 0.99800 \leq \hat{y}_{1L,0} \leq 1.00000 \end{array}$                                           |
| Gtt_1L_2 | 1100 GeV   | 400 GeV    | $\geq 1$     | CR<br>VR<br>SR0<br>SR1<br>SR3<br>SR4 | $\begin{array}{c} 0.93400 \leq \dot{y}_{1\text{L},2} < 0.95200 \\ 0.95200 \leq \dot{y}_{1\text{L},2} < 0.96600 \\ 0.99300 \leq \dot{y}_{1\text{L},2} < 0.99400 \\ 0.99400 \leq \dot{y}_{1\text{L},2} < 0.99500 \\ 0.99600 \leq \dot{y}_{1\text{L},2} < 0.99706 \\ 0.99706 \leq \dot{y}_{1\text{L},2} \leq 1.00000 \end{array}$ |
| Gtt_1L_3 | 1800 GeV   | 1200 GeV   | $\geq 1$     | CR<br>VR<br>SR4                      | $\begin{array}{l} 0.91800 \leq \hat{y}_{1\text{L},3} < 0.94400 \\ 0.94400 \leq \hat{y}_{1\text{L},3} < 0.96200 \\ 0.99562 \leq \hat{y}_{1\text{L},3} \leq 1.00000 \end{array}$                                                                                                                                                 |

#### **Individual Expected Exclusion Limits**



## **Systematics**

## **Systematic Uncertainties**

- Follow the prior multi-b search approach [5]
- Experimental systematics include: JER, JES, *b*-tagging, JVT...
- Main theory systematics are estimated from truth samples
  - $t\bar{t}$ : Generator, Parton Shower, Radiation
  - Single-top: Radiation, Interference between  $t\bar{t}$  and Wt (via WWbb)
  - Also have theory systematics on Gtt production cross section, W/Z+jets,  $t\bar{t} + X$ , diboson backgrounds...
- To avoid poor nuisance parameter constraints in fit, remove SR bins where tt̄ (single-top) theory uncertainty + error is ≥ 200 % (≥ 400 %)
  - $pprox \pm 1$  event for pprox 0.5 (pprox 0.25) expected  $t\bar{t}$  (single-top) per SR bin
  - Truth samples are not reconstructed, nominal distributions are different
  - Some SRs have poor MC statistics
  - Done before SR unblinding, no bias between regions based on data

## **Theory Systematics**



## **Relative Uncertainties**<sup>2</sup>



<sup>2</sup>Uncorrelated sums of quadrature here; correlations properly treated in HistFitter

## **Background Fits**

## CR $t\bar{t}$ Normalization Factors



### **VR Pulls**



#### Results
### **SR Pulls**



#### **Exclusion Limit**



### **Exclusion Limit Comparison**



#### Conclusions

- BDT re-analysis of the 79.9 fb<sup>-1</sup> dataset complete!
  - No major performance differences between the train and test sets
  - Satisfactory data / MC agreement for all input variables
  - VR pulls are small in both sets
  - Nuisance parameter pulls and constraints look good
- No SUSY, but observed limit matches expected limit fairly well!
  - Expected limit improved by 100 GeV-200 GeV in m<sub>q̃</sub>, m<sub>ỹ</sub><sup>0</sup>
  - Observed limit expanded by 250 GeV to  $\approx 1.4$  TeV in  $m_{\widetilde{\chi}_1^0}$
- Contributed BDT approach to multi-b R&D for the full Run 2 search
  - Parameterizing the BDT was successful
  - Found new useful kinematic variables
  - Developed new methods of creating SRs from the BDT

# Backup

### **Exclusion Limit Comparison (Expected)**





### **Exclusion Limit (Cross Sections)**



### **Exclusion Limit (Expected Cross Sections)**



# VR Data / MC Before and After Fit



#### **Fit Nuisance Parameters**



SUSY Multi-b Jets

#### **Location of Selected Parameter Points**



#### **Observing Zero 0L Events**

- No events were observed for any of the three 0L SR bins
- $\bullet\,$  Looked at MC samples to find the expected number of bkg events
  - Careful not to double count since they are non-orthogonal bins
- Poisson probability is then  $p\left(n=0\,|\,\lambda\right)=e^{-\lambda}$
- $p\left(0 \,|\, \lambda \right) = 0.15$  on the train set
  - With max (min) of 0.16 (0.07) on the systematics
- Probability of observing zero 0L events by chance is not insignificant
- Re-examination of differences between 0L and 1L in future work may be prudent

#### **Training Variables and Hyperparameters**

#### **Training Variables Selection**

- Iteratively:
  - Train BDT with all 70 potential variables
  - Evaluate performance:  $Z_B$ , mean  $Z_B$ , ROC AUC
  - Remove lowest gain variable (that's not a parameter), repeat
- Review results and decide on the best set of training variables
  - Can get into local mins, requires some babysitting / judgment calls



#### Hyperparameters

- Mostly using XGBoost defaults:
  - Objective function: binary logistic
  - Learning rate<sup>1</sup>  $\eta = 0.0722758514998$
  - Max number of trees / boosting rounds  $K_{max} = 200$
  - Number of early stopping rounds = 10
    - Validation threshold  $^{1} = 0.769402992287$
    - Best number of rounds K = 197
    - Trains in  $\approx 2\,\text{min}$  on 4 CPU cores
  - Max depth of tree 1 = 7

<sup>1</sup>Optimized

### Hyperparameter Bayesian Optimization

- Use BO when a function f is expensive & can't compute the gradient
  - f(hyperparameters) = train BDT, evaluate, return mean Z
- Sample prior distribution, infer posterior, iterate many times (slow!)
- Random Forest regressor or Gaussian Process
  - GP is a maximum likelihood method
  - Start from a kernel: RBF, Matern, white noise, Gaussian noise
- Done in Scikit-Optimize, see MLHEP 2018 slides & example below



### **Individual Exclusion Limits**

### Gtt\_0L\_0\_Gtt\_1L\_0 Exclusion Limit



### Gtt\_0L\_1\_Gtt\_1L\_0 Exclusion Limit



### Gtt\_0L\_1\_Gtt\_1L\_2 Exclusion Limit



#### Gtt\_0L\_3\_Gtt\_1L\_2 Exclusion Limit



### Gtt\_0L\_3\_Gtt\_1L\_3 Exclusion Limit



# Overfitting

# Overfitting

- Used a test/train split, only looked at train set for input variable, hyperparameter, signal region optimization, and HF R&D
  - Compared test/train  $\hat{y}$  distributions, no red flags
  - Did 5-fold cross-validation to see how accuracy varied, no red flags
- Run on test set after choosing regions, before unblinding
  - Minor drop in exclusion limit performance but not concerning  $({\sim}20\,\text{GeV})$
- Only using the test set in final presented results
  - Unless otherwise noted

### **Train Set Exclusion Limit**



#### Test and Train $\hat{y}$ Gtt\_0L\_0

Bkg (Test) Sig (Test) Bkg (Train) Sig (Train)

0.2

0.3

ŷ<sup>OL\_0</sup> SUSY, BDT





Test and Train  $\hat{y}$  Gtt\_0L\_1







Test and Train  $\hat{y}$  Gtt\_0L\_3



Test and Train  $\hat{y}$  Gtt\_1L\_0



Test and Train  $\hat{y}$  Gtt\_1L\_2







Test and Train  $\hat{y}$  Gtt\_1L\_3







#### **Parameter Point Graphs and Components**

# Graph 0L





# Graph (Mass Grid) 0L



# Graph 1L





Node Size 
$$\propto \sqrt{m_{\tilde{g}}^2 + m_{\tilde{\chi}_1^0}^2}$$
# Graph (Mass Grid) 1L



## **RMSD Alone: Graph 0L**





0L

Node Size 
$$\propto \sqrt{m_{\tilde{g}}^2 + m_{\tilde{\chi}_1^0}^2}$$

### **RMSD Alone: Graph 0L, Mass Grid**



### Mass Radius Alone: Graph 0L





Louvain Communities Community 0 (34) Community 1 (19)

### Mass Radius Alone: Graph 0L, Mass Grid



## S/B & Background Compositions

# S/B & Bkgs: $\mathbf{P0L}\_\mathbf{0}$





# S/B & Bkgs: POL\_1





# S/B & Bkgs: P0L\_3





# S/B & Bkgs: P1L\_0





# *S*/*B* **& Bkgs: P1L\_2**





# S/B & Bkgs: P1L\_3





## **Development Studies**

# **Estimating Significance** Z

- Ultimately will be fitting output  $\hat{y}$  in HistFitter, quite involved. . .
- To begin, use  $BinomialExpZ^3$  to make an estimate of Z,  $Z_B$ 
  - Works off of expected sig and bkg yields
  - Apply conservative bkg uncertainty of 50 %
- Optimize sig decision threshold on  $\hat{y}_{\rm SUSY,\,BDT}$  with respect to  $Z_{\rm B}$ 
  - Subject to keeping the bkg yield >0.5, and  $t\bar{t}$  statistical uncertainty  $\sqrt{\sum w_i^2}/w < 0.3$
- The resulting optimal  $\hat{y}_{\rm SUSY,\,BDT}$  thresholds are always > 0.99

<sup>&</sup>lt;sup>3</sup>Converted to python

# **Optimal** $\hat{y}_{\text{SUSY, BDT}}$ **Thresholds vs Mass Point**



#### $Z_{\mathsf{B}}$ vs Mass Point



## **BDT Bkg Efficiency vs Mass Point**



### **BDT Sig Efficiency vs Mass Point**



**Bkg Yield vs Mass Point** 



### Sig Yield vs Mass Point



# $H_{\mathsf{T}}^{\mathsf{leptons}\,+\,\mathsf{soft\,jets}}$ Obfuscated

- Have to address the data / MC kink at  $\approx 500\,\text{GeV}$
- Make  $H_{T}^{\text{leptons} + \text{soft jets}}$  Obfuscated by setting > 450 GeV to 480 GeV



# **Compressed: BDT Output** $\hat{y}_{SUSY, BDT}$

- Small  $\Delta m\left(\widetilde{g},\widetilde{\chi}^0_1\right) \to \text{soft } \widetilde{g} \text{ decay products, low } E_{\mathsf{T}}^{\mathsf{miss}}$ 
  - $m_{\widetilde{q}} = 2 \text{ TeV}$ ,  $m_{\widetilde{\chi}^0_1} = 1.2 \text{ TeV}$ ,  $\Delta m = 800 \text{ GeV}$
- With physical weights have to go to  $\hat{y}_{\rm SUSY,\,BDT} > 0.99$  to find sig



## **Boosted: BDT Output** $\hat{y}_{\text{SUSY, BDT}}$

• Large  $\Delta m\left(\widetilde{g},\widetilde{\chi}_{1}^{0}\right) \rightarrow$  highly boosted final state, high  $E_{\mathsf{T}}^{\mathsf{miss}}$ 

- $m_{\widetilde{q}} = 2.3 \text{ TeV}, \ m_{\widetilde{\chi}_1^0} = 1 \text{ GeV}, \ \Delta m \sim 2.3 \text{ TeV}$
- Similar story at high  $\hat{y}_{\text{SUSY, BDT}}$



### **Compressed: Gain**



### **Boosted: Gain**



### Compressed: $\Delta$ Gain



### Boosted: $\Delta$ Gain



### Variable Importance: Weight



### Variable Importance: Coverage



# **ROC Curves**

• Better performance for boosted point/regime, as expected



## Significance Optimization Pseudocode

```
# Numpy/Scipy port of the RooStats function 'BinomialExpZ' by Louis-Guillaume Gagnon
def significance(signalExp, backgroundExp, relativeBkgUncert):
    tau = 1.0 / (backgroundExp * relativeBkgUncert*relativeBkgUncert)
    x = 1.0 / (1.0 + tau)
    y = signalExp + backgroundExp
    z = 1 + backgroundExp * tau
    P_B = scipy.special.betainc(y, z, x)
    return -scipy.special.ndtri(P_B)
```

```
def find_best_thr(y, y_pred, W, relativeBkgUncert=0.5, bkg_cut_threshold = 0.5):
  fpr, tpr, thr = roc_curve(y, y_pred, sample_weight=W)
 # separate sig / bkg with numpy masks
  sigs = tpr*np.sum(W_sig)
  bkgs = fpr*np.sum(W_bkg)
 Zs = significance(sigs, bkgs, relativeBkgUncert)
 max_Z = -float ('inf'); yield_sig_best = -float ('inf'); yield_bkg_best = -float ('inf')
  i best = None
  for i in range(Zs.shape[0]);
    if Zs[i] > max_Z:
     W_bkg_selected = W_bkg[np.where(y_pred_bkg >= thr[i])]
      if W_bkg_selected_sum <= bkg_cut_threshold:
        \liminf_{i \in I} constraint = 1; continue;
     W_{ttbar} = W_{bkg} [np.where((y_pred_{bkg} > thr[i]) & (B_{bkg} = bkg_{type_{ttbar}})]
      ttbar_stat_uncert=np.sqrt(np.sum(np.square(W_ttbar)))/W_ttbar_sum
      if not (W_ttbar_sum > 0 and ttbar_stat_uncert < ttbar_stat_cut_threshold):
        limiting_constraint = 2; continue
     max_Z = Zs[i]; yield_sig_best = sigs[i]; yield_bkg_best = bkgs[i]; i_best = i
  return thr[i_best], max_Z, vield_sig_best, vield_bkg_best
```

## (Partial) Example Tree

```
booster[0]:
0:[iets_n_pt30_eta15 < 5.5] ves=1.no=2.missing=1.gain=37636.6953.cover=20332.127
   1: [met < 431.58255] yes = 3, no = 4, missing = 3, gain = 7176.16992, cover = 9852.65234
      3: [mT<140.011749] yes=7, no=8, missing=7, gain=2296.76367, cover=8852.43164
          7: [mTb_min < 186.546021] yes=15, no=16, missing=15, gain=166.470703, cover=8030.64453
             15: [signal_leptons_n <1.5] yes=31, no=32, missing=31, gain=99.6738281, cover
     =7373.80518
                31: [jets_n_pt30_eta20 < 5.5] yes=63, no=64, missing=63, gain=56.8789062, cover
     =7229.31689
                    63: [meff_4i < 2219.40161] ves=123.no=124.missing=123.gain=16.296875.cover
     =5966 33008
                       123: leaf = -0.141397834.cover = 5958.4873
                       124: leaf = -0.0323069319.cover = 7.84283161
                    64: [m_diff < 650] ves=125. no=126. missing=125. gain=31.7756348. cover
     = 1262.98694
                       125: \text{leaf} = -0.105186649. \text{cover} = 370.599792
                       126: \text{leaf} = -0.131471351. \text{cover} = 892.387207
                32: [jets_n_pt30_eta13 <4.5] yes=65, no=66, missing=65, gain=48.8466034, cover
     =144.488342
                    65: [signal_leptons_n < 2.5] yes=127, no=128, missing=127, gain=30.9985657,
     cover = 112.536476
                       127: |eaf = -0.105914511.cover = 109.036499
                       128: leaf = 0.0933374166.cover = 3.49997544
                    66: [m_diff < 450] ves=129. no=130. missing=129. gain=11.7550745. cover
     =31 9518681
                       129: leaf = 0.0635010377.cover = 10.0030622
                       130: leaf = -0.0273681637.cover = 21.9488068
             16:[jets_n_pt30_eta15 < 4.5] yes=33, no=34, missing=33, gain=171.120239, cover
     =656.838989
```

### Multi-*b*

# Multi-*b* Variables (1/2)

- Transverse mass between  $E_{\rm T}^{\rm miss}$  and leading lepton
  - Has kinematic endpoint near  $m_W$  for leptonic W decays in  $t\bar{t}$  & W+jets

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\rm lepton} E_{\rm T}^{\rm miss} \left(1 - \cos\left(\Delta\phi\left(\vec{p}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\rm \, lepton}\right)\right)\right)}$$

• Min transverse mass between  $E_{\rm T}^{\rm miss}$  and three leading b-jets

- Has kinematic endpoint near  $m_t$  for  $t\bar{t}$  background
- Larger for SUSY as  $\widetilde{\chi}_1^0 \; E_{\rm T}^{\rm miss}$  is largely independent of b-jets

$$m_{\mathsf{T},\mathsf{min}}^{b\text{-jets}} = \min_{i \le 3} \left( \sqrt{2p_{\mathsf{T}}^{b\text{-jet}\,i} E_{\mathsf{T}}^{\mathsf{miss}} \left( 1 - \cos\left(\Delta\phi\left(\vec{p}_{\mathsf{T}}^{\,\mathsf{miss}},\,\vec{p}_{\mathsf{T}}^{\,b\text{-jet}\,i}\right) \right) \right)} \right)$$

- Sum  $p_{\mathsf{T}}$  from soft components of the event (new!)
  - \*Capped at 450 GeV, "Obfuscated"

$$\begin{split} H_{\mathsf{T}}^{\mathsf{soft\,jets}} &= \sum_{5 \leq i} p_{\mathsf{T}}^{\mathsf{jet}\,i} \\ H_{\mathsf{T}}^{\mathsf{leptons\,+\,soft\,jets^*}} &= H_{\mathsf{T}}^{\mathsf{soft\,jets}} + H_{\mathsf{T}}^{\mathsf{leptons}} \end{split}$$

# Multi-*b* Variables (2/2)

- Min  $\Delta \phi$  between  $E_{\rm T}^{\rm miss}$  and any of the four leading jets
  - Helps reduce multi-jet background in 0L channel

$$\Delta \phi_{\min}^{4j} = \min_{i \le 4} \left( \left| \phi_{\mathsf{jet}\,i} - \phi_{\vec{p}_{\mathsf{T}}^{\,\mathsf{miss}}} \right| \right)$$

• Mass of leading four jets

$$M_J^{\Sigma} = \sum_{i \leq 4} m_{\mathsf{RC}\,\mathsf{jet}\,i}$$

- Effective mass of  $E_{\rm T}^{\rm miss}$  plus all signal leptons &  $\rm jets^4$ 

$$m_{\rm eff}^{\rm incl} = E_{\rm T}^{\rm miss} + \sum_i p_{\rm T}^{\rm jet\,i} + \sum_j p_{\rm T}^{\rm lep\,j}$$

• And for just the first 4 jets

$$m_{\rm eff}^{4j} = E_{\rm T}^{\rm miss} + \sum_{i=1}^4 p_{\rm T}^{{\rm jet}\,i}$$

<sup>4</sup>With  $p_{\rm T} >$  30 GeV,  $|\eta| < 2.8$ 

## ATLAS-CONF-2018-041 Exclusion Limits



[5]
#### **Machine Learning**

#### **Machine Learning Basics**

- Supervised learning: Train model on many known examples  $\vec{x_i}, y_i$
- Model consists of  $\theta_j$  parameters, e.g. linear  $\hat{y}_i = \sum_j \theta_j x_{ij}$
- Minimize two part objective function:  $\operatorname{obj}(\theta) = L(\theta) + \Omega(\theta)$
- Training Loss:  $L\left(\theta\right)$  measures model performance on training set

• MSE: 
$$L(\theta) = \sum_{i} (y_i - \hat{y}_i)^2$$

- Logistic:  $L(\theta) = \sum_{i} [y_i \ln (1 + \exp(-\hat{y}_i)) + (1 y_i) \ln (1 + \exp(\hat{y}_i))]$
- Regularization:  $\Omega\left(\theta\right)$  measures model complexity, prevents over fitting
  - L1 regularization:  $\Omega\left(\theta\right) \sim \lambda \|\theta\|$
  - L2 regularization:  $\Omega\left(\theta\right) \sim \lambda \|\theta\|^2$

#### Classification and Regression Trees (CARTs)

- Tree with branches of cuts chosen when training the model
  - Are just regular cuts, so we can (try to) understand what is happening, and we don't need parameter scaling
- Model's prediction assigns each event to a leaf, gets weight  $w_i$ 
  - Background-like  $w_j < 0$ , signal-like  $0 < w_j$



#### **Gradient Boosting**

- However individual CARTs are poor & limited models  $\rightarrow$
- Use an ensemble (**boosting**) of K trees, sum the individual weights
  - Take logistic function of output to get probability  $0 < \hat{y}_{\rm BDT} < 1$
- Iteratively add each new tree  $f_k(x_i)$ , complementing the existing trees

$$\begin{aligned} \hat{y}_i^{(0)} &= 0\\ \hat{y}_i^{(1)} &= f_1(x_i) = \hat{y}_i^{(0)} + f_1(x_i)\\ \hat{y}_i^{(2)} &= f_1(x_i) + f_2(x_i) = \hat{y}_i^{(1)} + f_2(x_i)\\ \hat{y}_i^{(t)} &= \sum_{k=1}^t f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i) \end{aligned}$$

- "Choose" each  $f_k(x_i)$  by minimizing  $\operatorname{obj}(\theta)$ 
  - In practice, grow  $f_k$  from 0 branches as there are  $\infty$  possible trees
- Lots of math (2nd order Taylor expansion...)  $\rightarrow$  gradient descent

#### XGBoost

- eXtreme Gradient Boosting: github.com/dmlc/xgboost
- Open source library for gradient boosted trees [6]
- High performance, used in many winning ML challenge solutions
  - Including by the devs in the Higgs challenge
- Very versatile (CPU, GPU, Hadoop, Spark, Python, R, Scala, C++...)
- Uses L1 + L2 regularization: T = number of leaves,  $w_j =$  leaf weights

$$\Omega\left(f\right) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_{j}^{2}$$

#### **SUSY**

#### **General Properties of SUSY**

• Generate SUSY transform with operator Q:

 $Q |\mathsf{Boson}\rangle = |\mathsf{Fermion}\rangle$   $Q |\mathsf{Fermion}\rangle = |\mathsf{Boson}\rangle$ 

- Q must be spin 1/2 (i.e. spacetime symmetry) for  $Q\left|\mathsf{B}\right\rangle=\left|\mathsf{F}\right\rangle$
- Spacetime symmetry + SM fermion chirality + Haag-Łopuszański-Sohnius extension of Coleman-Mandula theorem  $\rightarrow$

$$\{Q, Q^{\dagger}\} = P^{\mu}$$
$$\{Q, Q\} = \{Q^{\dagger}, Q^{\dagger}\} = 0$$
$$[P^{\mu}, Q] = [P^{\mu}, Q^{\dagger}] = 0$$

- $[P^{\mu},Q] = 0$  implies  $-P^2$  ( $m^2$  operator) commutes with  $Q, Q^{\dagger} \rightarrow$ In unbroken SUSY, particles and superpartners have identical m
- Q also commutes with gauge generators  $\rightarrow$  Share electric charge, weak isospin, and color degrees of freedom

[10]

#### Solving the Hierarchy Problem

• In practice each SM fermion partners with two complex scalar fields

• One for each of its left and right-handed 2-component spinor elements

+

- Results in 4 fermion d.o.f. pairing with 4 boson d.o.f.
- When Higgs interactions are added the two partner complex scalar fields exactly cancel the fermion correction!

• For 
$$\lambda_S = \left|\lambda_f\right|^2 = \lambda$$

$$\Delta m_H^2 = -\frac{\lambda}{8\pi^2} \Lambda_{\text{UV}}^2 \qquad \qquad \underbrace{-\dots}_H - \underbrace{\bigcirc}_t^t \\ + 2 \times \frac{\lambda}{16\pi^2} \Lambda_{\text{UV}}^2 \qquad \qquad \underbrace{\stackrel{t}{\tilde{t}}}_{\tilde{t}} \\ + \mathcal{O}\Big(\Big(m^2 \log \Lambda_{\text{UV}}\Big)\Big) \qquad \underbrace{-\dots}_H - \underbrace{\bigcirc}_{\tilde{t}}^t \\ \underbrace{\stackrel{t}{\tilde{t}}}_{\tilde{t}} - \underbrace{-\dots}_H - \underbrace{\bigcirc}_{\tilde{t}}^t - \underbrace{-\dots}_H - \underbrace{\frown}_{\tilde{t}}^t - \underbrace{-\dots}_H - \underbrace{-\dots}$$

|10|

### Minimal Supersymmetric SM (MSSM) (1/2)

- Add the minimum number of SUSY fields to the SM  $\rightarrow$  MSSM
- Form supermultiplets of SM particles and their superpartners
  - Fermions ↔ scalar fermions (sfermions: squarks, sleptons)
  - Gauge bosons  $\leftrightarrow$  fermion gauginos (gluinos, winos, bino, photino)
- Results in the following fields / particles
  - Plus all fermion generations and anti-particles

| Super-<br>multiplets | Super-<br>fields  | Bosonic<br>Fields                             | Fermionic<br>Partners                       | SU(3) <sub>C</sub> | $SU(2)_L$ | U(1) <sub>Y</sub> |
|----------------------|-------------------|-----------------------------------------------|---------------------------------------------|--------------------|-----------|-------------------|
| gluon/gluino         | $\widehat{V}_8$   | g                                             | $\widetilde{g}$                             | 8                  | 1         | 0                 |
| gauge boson/         | $\widehat{V}$     | $W^{\pm}$ , $W^0$                             | $\widetilde{W}^{\pm}$ , $\widetilde{W}^{0}$ | 1                  | 3         | 0                 |
| gaugino              | $\widehat{V}'$    | В                                             | $\widetilde{B}$                             | 1                  | 1         | 0                 |
| slepton/             | Ê                 | $(\tilde{\nu}_{\rm L},  \tilde{e}_{\rm L})$   | $(\nu, e^{-})_{\mathrm{L}}$                 | 1                  | 2         | -1                |
| lepton               | $\widehat{E}^{c}$ | $\widetilde{e}^*_{ m R}$                      | $e_{\mathrm{L}}^{c}$                        | 1                  | 1         | 2                 |
| squark/              | $\widehat{Q}$     | $(\widetilde{u}_{ m L},\widetilde{d}_{ m L})$ | $(u, d)_{\mathrm{L}}$                       | 3                  | 2         | $\frac{1}{3}$     |
| guark/               | $\widehat{U}^{c}$ | $\widetilde{u}^*_{ m R}$                      | $u_{\mathrm{L}}^{c}$                        | $\overline{3}$     | 1         | $-\frac{4}{3}$    |
| quark                | $\widehat{D}^{c}$ | $\widetilde{d}^*_{ m R}$                      | $d^c_{\rm L}$                               | $\overline{3}$     | 1         | $\frac{2}{3}$     |
| Higgs/               | $\widehat{H}_u$   | $\left(H_{u}^{+}, H_{u}^{0}\right)$           | $(\widetilde{H}_u^+,  \widetilde{H}_u^0)$   | 1                  | 2         | 1                 |
| Higgsino             | $\widehat{H}_d$   | $\left(H_{d}^{0},H_{d}^{-}\right)$            | $(\widetilde{H}_d^0,  \widetilde{H}_d^-)$   | 1                  | 2         | -1 [1             |

### Minimal Supersymmetric SM (MSSM) (2/2)

- The Higgs supermultiplet is a bit more complicated...
  - Two complex Higgs doublets  $\leftrightarrow$  fermion Higgsino doublet
  - Plus an anti-particle copy of the supermultiplet
- Need the Higgs doublet to cancel Higgsino generated gauge anomalies
- Also for up & down-type mass generation to be consistent with SUSY
  - Superpotential  $W = \lambda_d \hat{H}_d \hat{Q} \hat{D}^c \lambda_u \hat{H}_u \hat{Q} \hat{U}^c + \lambda_e \hat{H}_d \hat{L} \hat{E}^c + \mu \hat{H}_u \hat{H}_d$
- Neutral (charged) gauginos and Higgsinos mix  $\rightarrow$  physical neutralinos  $\tilde{\chi}^0$  (charginos  $\tilde{\chi}^{\pm}$ ) mass states
- Results in 5 Higgs particles:  $H^{\pm}$ , CP-even  $h^0$  &  $H^0$ , and CP-odd  $A^0$ 
  - 125 GeV Higgs is  $h^0$  (by construction  $m(h^0) < m(H^0))$

#### End result is a model with 124 free parameters!

111

#### $\mathit{R}\text{-}\mathsf{Parity}$ and the LSP

- In SM baryon & lepton numbers ( B , L) are conserved  $\rightarrow p$  is stable
  - $p \rightarrow e^+ \pi^0$  has a mean lifetime of  $> 8.2 \times 10^{33}$  years [11]
- In SUSY particle-superpartner operators can violate B-L conservation
- To fit experiment, force  $\mathcal{L}_{\mathrm{MSSM}}$  to obey R-parity, where S is spin
  - This restores (renormalizable) B-L conservation

$$R = (-1)^{3(B-L)+2S}$$

- All SM particles have R=+1; SUSY  $R=-1~\rightarrow$ 
  - SM colliders produce even numbers of SUSY particles
  - SUSY states can't fully decay to SM
  - The lightest supersymmetric particle (LSP) is absolutely stable
- If the LSP is uncharged, it only weakly interacts with SM particles  $\rightarrow$
- LSP can be an excellent DM candidate, appears as  $E_{\rm T}^{\rm miss}$  in colliders

[10]

#### Unification

- SM (dashed) SU(2)<sub>L</sub> & U(1)<sub>Y</sub> gauge couplings converge (electroweak unification) at a high energy scale, but SU(3)<sub>C</sub> does not
- MSSM (solid) adds the right amount of new particles to the loop corrections for all to converge around  $M_U \approx 1.5 \times 10^{16}$  GeV!



[10]

#### **Broken SUSY & Naturalness Considerations**

- Would have noticed a  $511\,{\rm keV}\ \widetilde{e}$  long ago  $\rightarrow$  SUSY must be broken
- To continue to cancel the Higgs mass corrections, would like to keep  $m_S \approx m_f \& \lambda_S \approx |\lambda_f|^2 \rightarrow \text{Soft SUSY breaking}$
- Sets some conditions but still arbitrary;  $105/124\ {\rm parameters}\ {\rm control}\ {\rm it}$
- Soft SUSY breaking introduces a "little" hierarchy problem for  $m_Z$
- To avoid fine-tuning, naturalness leads to upper limit on  $M_{\rm SUSY}$
- $M_{\rm SUSY} \sim 1 \, {\rm TeV}$  requires  $\sim 1\%$  fine-tuning to get the correct  $m_Z$
- LHC SUSY searches are really starting to push against this limit, expect to see even more conflict after Run 2

10.11

#### **ATLAS SUSY Mass Limits**

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

ATLAS Preliminary

March 2019

|                                                   | Model                                                                                                                                                       | Si                  | gnature                          | )∫£d                                                                                                | r [fb <sup>-</sup> | Mass lin                                                                         | nit                               |                                        |                                                                                                                                                                                                                              | Reference                                                    |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|-----------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|
|                                                   | $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{t}_1^0$                                                                                                 | 0 e, μ<br>mono-jet  | 2-6 jets<br>1-3 jets             | $E_{I}^{\text{miss}}$ 3<br>$E_{T}^{\text{miss}}$ 3                                                  | 5.1<br>5.1         | [2x, 8x Degen]<br>[1x, 8x Degen] 0.                                              | 0.9                               | 1.55                                   | $m(\xi_1^0) < 100 \text{ GeV}$<br>$m(\xi) - m(\xi_1^0) = 5 \text{ GeV}$                                                                                                                                                      | 1712.02332<br>1711.03301                                     |  |  |
| Inclusive Searche                                 | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_1^0$                                                                                    | 0 e, µ              | 2-6 jets                         | $E_T^{miss}$ 38                                                                                     | 5.1                |                                                                                  | Forbidden                         | 2.0<br>0.95-1.6                        | m(ξ <sup>0</sup> <sub>1</sub> )<200 GeV<br>m(ξ <sup>1</sup> )=900 GeV                                                                                                                                                        | 1712.02332<br>1712.02332                                     |  |  |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell \ell)\tilde{\chi}_{1}^{0}$                                                                       | 3 e, μ<br>ee, μμ    | 4 jets<br>2 jets                 | E <sup>miss</sup> 3                                                                                 | 5.1<br>5.1         |                                                                                  |                                   | 1.85                                   | m( $\hat{\xi}_1^0$ )<800 GeV<br>m( $\hat{\xi}_1^0$ )=50 GeV                                                                                                                                                                  | 1706.03731<br>1805.11381                                     |  |  |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ \tilde{t}_1^0$                                                                                              | 0 e, μ<br>3 e, μ    | 7-11 jets<br>4 jets              | E <sup>miss</sup> 34<br>34                                                                          | 5.1<br>5.1         |                                                                                  | 0.98                              | 1.8                                    | m( $\tilde{\epsilon}_1^0$ ) <400 GeV<br>m( $\tilde{\epsilon}_1^0$ )=200 GeV                                                                                                                                                  | 1708.02794<br>1706.03731                                     |  |  |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_{1}^{0}$                                                                                        | 0-1 e,μ<br>3 e,μ    | 3 b<br>4 jets                    | E <sup>miss</sup> 71<br>38                                                                          | 9.8<br>5.1         |                                                                                  |                                   | 2.25                                   | m( $\hat{r}_{j}^{0}$ )<200 GeV<br>m( $\hat{r}_{1}$ )=300 GeV                                                                                                                                                                 | ATLAS-CONF-2018-041<br>1706.03731                            |  |  |
| 3 <sup>rd</sup> gen. squarks<br>direct production | $\hat{b}_1\hat{b}_1, \hat{b}_1 \rightarrow b\tilde{\chi}_1^0/i\tilde{\chi}_1^*$                                                                             |                     | Multiple<br>Multiple<br>Multiple | 31<br>31<br>31                                                                                      | 5.1<br>5.1<br>5.1  | Forbidden<br>Forbi                                                               | 0.9<br>Iden 0.58-0.82<br>Iden 0.7 | m(F <sup>2</sup> )                     | $m(\hat{\xi}_1^0)$ =300 GeV, BR( $b\hat{\xi}_1^0$ )=1<br>$h(\hat{\xi}_1^0)$ =300 GeV, BR( $b\hat{\xi}_1^0$ )=BR( $b\hat{\xi}_1^0$ )=0.5<br>:200 GeV, $m(\hat{\xi}_1^+)$ =300 GeV, BR( $b\hat{\xi}_1^+$ )=1                   | 1768.09268, 1711.03301<br>1708.09268<br>1708.03731           |  |  |
|                                                   | $\tilde{b}_1 \tilde{b}_1,  \tilde{b}_1 {\rightarrow} b \tilde{\boldsymbol{\chi}}_2^0 {\rightarrow} b b \tilde{\boldsymbol{\chi}}_1^0$                       | 0 e, µ              | 6 <i>b</i>                       | $E_T^{miss} = 1$                                                                                    | 39                 | Forbidden 0.2                                                                    | 8-0.48                            | 0.23-1.35                              | $\Delta m(\hat{\chi}_{2}^{0}, \hat{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\hat{\chi}_{1}^{0}) = 100 \text{ GeV}$<br>$\Delta m(\hat{\chi}_{2}^{0}, \hat{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\hat{\chi}_{1}^{0}) = 0 \text{ GeV}$ | SUSY-2018-31<br>SUSY-2018-31                                 |  |  |
|                                                   | $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow Wb \tilde{\chi}_1^0$ or $i \tilde{\chi}_1^0$<br>$\tilde{i}_1 \tilde{i}_1$ . Well-Tempered LSP             | 0-2 e,µ 0           | -2 jets/1-2 h<br>Multiple        | Eniss 34                                                                                            | 5.1                | h                                                                                | 0.48-0.84                         | m(F <sup>2</sup> -)r                   | m(\$ <sup>0</sup> )=1 GeV<br>-150 GeV m(\$ <sup>2</sup> ),m(\$ <sup>2</sup> )=5 GeV i, = i,                                                                                                                                  | 1506.08616, 1709.04183, 1711.11520<br>1709.04183, 1711.11520 |  |  |
|                                                   | $I_1I_1, I_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \hat{G}$                                                                        | $1\tau+1e,\mu,\tau$ | 2 jets/1 b                       | $E_T^{miss}$ 36                                                                                     | 5.1                |                                                                                  |                                   | 1.16                                   | m(t1)=800 GeV                                                                                                                                                                                                                | 1803.10178                                                   |  |  |
|                                                   | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{t}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{t}_1^0$                             | 0 e, µ              | 2 c                              | $E_T^{miss}$ 36                                                                                     | 5.1                |                                                                                  | 0.85                              |                                        | m(R <sup>2</sup> )=0 GeV                                                                                                                                                                                                     | 1805.01849                                                   |  |  |
|                                                   |                                                                                                                                                             | 0 e, µ              | mono-jet                         | $E_T^{miss}$ 36                                                                                     | 5.1                | . 0.                                                                             | 43                                |                                        | m(r <sub>1</sub> ,z)-m(t <sup>1</sup> <sub>1</sub> )=5 GeV                                                                                                                                                                   | 1711.03301                                                   |  |  |
|                                                   | $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$                                                                                          | 1-2 e, µ            | 4 b                              | $E_T^{miss}$ 36                                                                                     | 5.1                | 4                                                                                | 0.32-0.88                         |                                        | $m(\tilde{t}_1^0)$ =0 GeV, $m(\tilde{t}_1)$ - $m(\tilde{t}_1^0)$ = 180 GeV                                                                                                                                                   | 1706.03986                                                   |  |  |
|                                                   | $\tilde{\chi}_1^*\tilde{\chi}_2^0$ via WZ                                                                                                                   | 2-3 e, μ<br>ee, μμ  | ≥ 1                              | $E_{Liss}^{miss}$ 38<br>$E_{T}^{miss}$ 38                                                           | 5.1<br>5.1         | 1/X 0.17                                                                         | 0.6                               |                                        | $m(\hat{r}_{1}^{*})=0$<br>$m(\hat{r}_{1}^{*})-m(\hat{r}_{1}^{*})=10 \text{ GeV}$                                                                                                                                             | 1403.5294, 1806.02293<br>1712.08119                          |  |  |
|                                                   | $\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}$ via $WW$                                                                                                         | 2 e, µ              |                                  | $E_T^{miss} = 1$                                                                                    | 39                 | 0.4                                                                              | 12                                |                                        | m(( <sup>0</sup> )=0                                                                                                                                                                                                         | ATLAS-CONF-2019-008                                          |  |  |
| sc <                                              | $\hat{\chi}_1^* \hat{\chi}_2^0$ via Wh                                                                                                                      | 0-1 e, µ            | 2 b                              | ET 38                                                                                               | 5.1                | (1) / X 1                                                                        | 0.68                              |                                        | m(t <sup>0</sup> <sub>1</sub> )=0                                                                                                                                                                                            | 1812.09432                                                   |  |  |
|                                                   | $\chi_1^* \chi_1^*$ via $\ell_L/\bar{\nu}$                                                                                                                  | 2 e, µ              |                                  | E <sub>T</sub> 1                                                                                    | 39                 | 6<br>                                                                            | 1.0                               |                                        | $m(\tilde{\ell}, \tilde{r}) = 0.5(m(\tilde{\ell}_1^-) + m(\tilde{\ell}_1^-))$                                                                                                                                                | ATLAS-CONF-2019-008                                          |  |  |
| 日心                                                | $X_1X_1/X_2, X_1 \rightarrow \tau_1 \nu(\tau \nu), X_2 \rightarrow \tau_1 \tau(\nu \nu)$                                                                    | 21                  |                                  | *T 31                                                                                               | 5.1                | μ <sup>(k)</sup><br>1 μ <sup>2</sup> 0.22                                        | 0.76                              | m(8 <sup>+</sup> 1)-m(8 <sup>+</sup> 1 | $m(r_1)=0, m(r, r)=0.5(m(\tilde{r}_1)+m(\tilde{r}_1))$<br>=100 GeV, $m(r, r)=0.5(m(\tilde{r}_1)+m(\tilde{r}_1))$                                                                                                             | 1708.07875                                                   |  |  |
|                                                   | $\tilde{t}_{L,R}\tilde{t}_{L,R}, \tilde{t} \rightarrow t\tilde{t}_1^0$                                                                                      | 2 e, μ<br>2 e, μ    | 0 jets<br>≥ 1                    | $\begin{array}{ccc} E_{\widetilde{L}}^{\mathrm{miss}} & 1 \\ E_{T}^{\mathrm{miss}} & 3 \end{array}$ | 39<br>5.1          | 0.18                                                                             | 0.7                               |                                        | m(ℓ̂)=0<br>m(ℓ̂)-m(ℓ̂)=5 GeV                                                                                                                                                                                                 | ATLAS-CONF-2019-008<br>1712.08119                            |  |  |
|                                                   | $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$                                                                                           | 0 e, μ<br>4 e, μ    | $\ge 3 b$<br>0 jets              | $\begin{array}{ccc} E_{I}^{\mathrm{miss}} & 3i \\ E_{T}^{\mathrm{miss}} & 3i \end{array}$           | 5.1<br>5.1         | 9 0.13-0.23<br>9 0.3                                                             | 0.29-0.88                         |                                        | $BR(\hat{\xi}_{\hat{d}}^0 \rightarrow h\hat{G})=1$<br>$BR(\hat{\xi}_1^0 \rightarrow 2G)=1$                                                                                                                                   | 1808.04030<br>1804.03602                                     |  |  |
| ived<br>des                                       | $\operatorname{Direct} \hat{\boldsymbol{\chi}}_1^* \hat{\boldsymbol{\chi}}_1^- \operatorname{prod.}, \operatorname{long-lived} \hat{\boldsymbol{\chi}}_1^*$ | Disapp. trk         | 1 jet                            | $E_T^{miss}$ 36                                                                                     | 5.1                | 0.15                                                                             | 0.46                              |                                        | Pure Wino<br>Pure Higgaino                                                                                                                                                                                                   | 1712.02118<br>ATL-PHYS-PUB-2017-019                          |  |  |
| ng-                                               | Stable g R-hadron                                                                                                                                           |                     | Multiple                         | 38                                                                                                  | 5.1                | 1                                                                                |                                   | 2.0                                    |                                                                                                                                                                                                                              | 1902.01636,1808.04095                                        |  |  |
| 20                                                | Metastable $\tilde{g}$ R-hadron, $\tilde{g} \rightarrow qq \tilde{t}_1^0$                                                                                   |                     | Multiple                         | 36                                                                                                  | 5.1                | (r(g) =10 ns, 0.2 ns)                                                            |                                   | 2.05 2                                 | 14 m(( <sup>2</sup> <sub>1</sub> )=100 GeV                                                                                                                                                                                   | 1710.04901,1808.04095                                        |  |  |
|                                                   | LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$                                                                  | eµ,et,µt            |                                  | 5                                                                                                   | 3.2                | 5.                                                                               |                                   | 1.9                                    | $\lambda_{311}'=0.11,\lambda_{132/133/233}=0.07$                                                                                                                                                                             | 1607.08079                                                   |  |  |
|                                                   | $\tilde{\chi}_1^+ \tilde{\chi}_1^+ / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell_{YY}$                                                                | 4 e, µ              | 0 jets                           | $E_T^{miss}$ 36                                                                                     | 5.1                | $(\frac{1}{2}/\hat{k}_{2}^{0}   [\lambda_{33} \neq 0, \lambda_{124} \neq 0]$     | 0.82                              | 1.33                                   | m( <sup>2</sup> <sub>1</sub> )=100 GeV                                                                                                                                                                                       | 1804.09602                                                   |  |  |
| RPV                                               | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq k_1'', k_1'' \rightarrow qqq$                                                                                 | 4                   | o sarge-R jet<br>Multiple        | s 38<br>38                                                                                          | 5.1<br>5.1         | [m(k_)=200 GeV, 1100 GeV]<br>[/(=2e-4, 2e-5]                                     | 1.0                               | 1.3 1.9<br>5 2.0                       | Large X <sub>112</sub><br>m( <sup>2</sup> )=200 GeV him-like                                                                                                                                                                 | 1804.03568<br>ATLAS-CONF-2018-003                            |  |  |
|                                                   | $\overline{u}, \overline{i} \rightarrow t \overline{x}_{1}^{0}, \overline{x}_{1}^{0} \rightarrow t b s$                                                     |                     | Multiple                         | 31                                                                                                  | 5.1                | [ [4] <sub>111</sub> =2e-4, 1e-2]                                                | 0.55 1.0                          | 5                                      | m( <sup>20</sup> )=200 GeV, bino-like                                                                                                                                                                                        | ATLAS-CONF-2018-003                                          |  |  |
|                                                   | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$                                                                                                       |                     | 2 jets + 2 b                     | 36                                                                                                  | 5.7                | 1 [gg, b1] 0.4                                                                   | 0.61                              |                                        |                                                                                                                                                                                                                              | 1710.07171                                                   |  |  |
|                                                   | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow qt$                                                                                                       | 2 e, μ<br>1 μ       | 2 <i>b</i><br>DV                 | 3i<br>1                                                                                             | 5.1<br>36          | $X_{1} = [1e \cdot 10 < X_{2N} < 1e \cdot 8, 3e \cdot 10 < X_{2N} < 3e \cdot 9]$ | 1.0                               | 0.4-1.45<br>1.6                        | $BR(\vec{r}_1 \rightarrow bv/b\mu) > 20\%$<br>$BR(\vec{r}_1 \rightarrow q\mu) = 100\%$ , $cost. = 1$                                                                                                                         | 1710.05544<br>ATLAS-CONF-2019-006                            |  |  |
|                                                   |                                                                                                                                                             |                     |                                  |                                                                                                     |                    |                                                                                  |                                   |                                        |                                                                                                                                                                                                                              |                                                              |  |  |
| :0-1-                                             |                                                                                                                                                             | - Karlta            |                                  |                                                                                                     | 4                  | -1                                                                               |                                   | 1                                      |                                                                                                                                                                                                                              | 1                                                            |  |  |
| only                                              | a selection of the available mas                                                                                                                            | Mass scale [TeV]    |                                  |                                                                                                     |                    |                                                                                  |                                   |                                        |                                                                                                                                                                                                                              |                                                              |  |  |

"Only a selection of the available mass limits on new states phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

[12]

#### Training Variables (with BDT Splits)

#### $N_{\rm jet}(p_{\rm T}>$ 30 GeV, $\eta<1.3)$



#### $N_{\rm jet}(p_{\rm T}>$ 30 GeV, $\eta<1.5)$





#### $N_{\rm jet}(p_{\rm T}>$ 30 GeV, $\eta<2.0)$



#### $N_{\rm jet}(p_{\rm T} > 50 \,{\rm GeV}, \eta < 1.5)$



15

20

W

41

- G#

- Solits

topEW\*

## $H_{T}^{\text{leptons} + \text{soft jets}}$ Obfuscated





 $E_{\mathbf{T}}^{\mathbf{miss}}$ 



#### **Second Tier Training Variables**

### $N_{\rm sig\,lep}$





#### $N_{\rm RC\,jet}(m>80\,{\rm GeV})$



#### $N_{\rm jet}(p_{\rm T}>$ 30 GeV, $\eta<1.0)$



#### $N_{\rm jet}(p_{\rm T}>$ 50 GeV, $\eta<1.0)$



#### $N_{\rm jet}(p_{\rm T}>$ 50 GeV, $\eta<1.3)$



# $H_{\mathbf{T}}^{\mathbf{soft\,jets}}$



 $m_{\rm eff}^{\rm incl}$ 



 $m^{b-jets}_{T,min}$ 



 $M_J^{\Sigma}$ 



 $m_{\rm eff}^{4j}$ 





*b*-jet 4  $p_{\mathsf{T}}$ 



#### **Parameters**


## $\Delta m$



## Misc.

Particles of the SM



## The ATLAS Coordinate System



[3]

## References

- ATLAS Collaboration, Summary plots from the ATLAS Standard Model physics group, July, 2018. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM.
- [2] Service graphique, CERN, https://cds.cern.ch/record/1708849.
- J. Pequenao, <u>Computer generated image of the whole ATLAS detector</u>, Mar, 2008. https://cds.cern.ch/record/1095924.
- J. Pequenao and P. Schaffner, An computer generated image representing how ATLAS detects particles, Jan, 2013. https://cds.cern.ch/record/1505342.
- [5] ATLAS Collaboration, ATLAS-CONF-2018-041, 2018, https://cds.cern.ch/record/2632347.
- [6] T. Chen and C. Guestrin, CoRR abs/1603.02754 (2016), arXiv:1603.02754 [cs.LG].
- [7] M. Baak, G. J. Besjes, D. Côte, A. Koutsman, J. Lorenz, and D. Short, Eur. Phys. J. C75 (2015) 153, arXiv:1410.1280 [hep-ex].
- [8] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Journal of Statistical Mechanics: Theory and Experiment 2008 (2008) P10008, http://stacks.iop.org/1742-5468/2008/i=10/a=P10008.
- [9] T. Aynaud, python-louvain, Louvain Community Detection, 2011-. https://github.com/taynaud/python-louvain.
- [10] S. P. Martin, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1, arXiv:hep-ph/9709356 [hep-ph].
- [11] Particle Data Group Collaboration, C. Patrignani et al., Chin. Phys. C40 (2016) 100001.
- [12] ATLAS Collaboration, Summary plots from the ATLAS Supersymmetry physics group, July, 2018. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY.
- D. Galbraith and C. Burgard, Standard model of the standard model, CERN Webfest 2012. http://www.texample.net/tikz/examples/model-physics.